

Benzo[rst]pentaphene derivatives as building blocks for 2D material with intense ECL emission

Lorenzo Ripani^[a], Xiushang Xu^[b], Akimistu Narita^[b] and Massimo Marcaccio^[a]

[a] University of Bologna, Department of Chemistry "G. Ciamician", Via Francesco Selmi 2, Italy; [b] Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.

Introduction

Polycyclic aromatic hydrocarbons (PAHs) constitute a large class of organic molecules with extended π-molecular orbitals. Although PAHs are currently considered as pollutants, mainly due to incomplete combustion by-product of organic matter, there is an extensive, very active and challenging research on PAHs to exploit these molecules in designing optoelectronic devices [1] and energy-storage applications [2].
In this work, we report the electrochemical characterization and electrochemiluminescence (ECL) in solution of a family of pristine and mesitylen-substituted mono and dimeric benzo[rst]pentaphene (BPP).

<u>Photoluminescence (PL) and Electrochemiluminescence (ECL)</u>

Emission spectra

Electrochemical characterization

тис	

THF 0.2 DCM

species PL (λ_1) ECL (λ_1) /nm /nm 435 440 449 443 444 IV 495 450 • ECL is generated through the benzyl-peroxide (BPO) co-reactant method by the simultaneous reduction of BPO and the species in DMF. The ECL spectrum of species II and IV is

compared with the

photoluminescence (PL)

corresponding

one.

• BPP-Mes (II) emission shows different relative intensities, related to the vibrational structure, between PL and ECL.

The maximum of ECL emission for dBPP-Mes (IV) shows an unexpected red shift, of about 45 nm, compared with the photoluminescence spectrum. As this compound is poorly soluble in DMF, which has resulted in a saturated solution, a plausible hypothesis is that the lowering of the emitting energy state is due to a π - π stacking interaction occurring in the current experimental conditions. Further experiments are in progress to confirm such a hypothesis.

- Mesitylene substitution, as a bulky side-group, provides a more stable electrochemical behaviour than pristine BPP.
- The two BPP subunits of dBPP-Mes (IV) are partially interacting due to the observed *180-190* mV difference between consecutive $E_{1/2}$ [3].

Film growth during CV of dBPP-Mes AV!

- Cycling repeatedly the potential scan up to about 2.5
 V, a stepwise increase of the current is observed.
- New electrochemical processes develop..
- After cycling, the Platinum electrode showed a deposited brownish film.

	Oxid. ^(a) $E_{1/2}$ / V vs. SCE			Red . ^(b) E _{1/2} / V vs. SCE			
species	Ι	II	III	Ι	II	III	IV
Ι	+1.07*	+1.70*		-1.75	-2.26*	-2.68	
II	+1.03	+1.66		-1.76	-2.28*	-2.68	
III	+0.98	+1.64		-1.77	-2.28		
IV	+1.01	+1.23	+1.76	-1.70	-1.88	-2.33	-2.51

(a) Tetrabutylammonium hexafluorophosphate(TBAH)/DCM, (b)TBAH/THF,* Peak potential for irreversible processes

<u>Summary and future prospective</u>

- We reported the electrochemical characterization and ECL of a family of benzo[rst]pentaphene derivatives, we observed that bulky side-groups help to stabilize the radical ions generated at the electrode and redshift the emission wavelength.
- Our next aim will be to further investigate the spectroscopic properties of these molecules and to characterize thoroughly the film observed during the oxidation of dBPP-Mes.

CONTACT PERSON REF

@LorenzoRipani

REFERENCES

[1] Kim S. et al., J. Mater. Chem., 2008, 18, 3376-3384
[2] Bachman J.C. et al., Nat. Commun., 6, 7040 (2015)
[3] A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and application, Wiley

