

Carbon nanostructures decorated with Cerium Oxide as multi-functional electrocatalysts for CO₂ conversion SEMEM

Miriam Moro, Giovanni Valenti, Tiziano Montini, Lucia Nasi, Michele Melchionna, Giovanni Bertoni, Marcella Bonchio, Paolo Fornasiero, Francesco Paolucci and Maurizio Prato

H₂O (optional)

Introduction Hydrocarbon • Due to the alarming problem of global warming and climate changes, recently the research has focused on the development of new materials and technology capable of capturing and converting CO₂ into useful products.¹ Excess $\Rightarrow 0_2$ Reactant and O²⁻/H⁺ • In this work we present a new design of electrocatalysts able to reduce CO₂ in a selective and efficient way: the combination Side Product migration of different building blocks in a single nanostructure increase the selectivity

• Combining the unique physico-chemical properties of functionalized MWCNTs and cerium oxide (CeO₂), we demonstrate how to selectively control the production of **formic acid** (FA) in aqueous solutions.²

MWCNTs decorated with CeO₂ **nanoparticles**

•The catalytic activity of CeO₂ depend on reversible Ce^{3+/4+} redox pair and release or storage of oxygen atoms. The formation of oxygen vacancies in reduced CeO₂ promotes CO₂ binding and activation by Ce³⁺ sites.³

•The **nano-dimensions** of CeO₂ determine redox proprieties and oxygen vacancies formation.

•The MWCNTs counteract the insulating effect of oxide shell and promote the generation of Ce³⁺ sites, thank to great surface area and electrical conductivity.

CO₂ air capture CO_{2 (g)} FA HCO_{2 (ads)} $\mathcal{CO}_{2 \text{ (ads)}}$ CeO₂ **MWCNT** Electrode

 $CO_2 + H_2O \Longrightarrow$

Synthesis

The oxidation of MWCNTs with H_2SO_4/HNO_3 forms oxygenated groups on MWCNTs surface that allow the anchoring of Ce(ODe)_{4.} The Ce precursor hydrolysis forms amorphous CeO₂ islands, while the calcination at 250°C leads to the crystallization

Morphology of MWCNTs@CeO₂

The MWCNTs have diameter in the range 20-30 nm, while the mean size of CeO₂ NPs is 2.8±0.5 nm, with *fcc* structure.

STEM-HAADF of a typical MWCNT@CeO₂

Energy-dispersive X-ray map highlighting element the distribution of CeO₂ (green) and the structure of MWCNT

HRTEM of MWCNT@CeO₂

CO₂RR performances

•The electrocatalyst MWCNT@CeO, shows a higher cathodic current than alone CeO₂ NPs. The catalytic activity derive from combination and interaction of CeO₂ NPs with MWCNTs. •Presence of only two CO₂RR products: hydrogen an formic acid \rightarrow high selectivity

•The FE for formic acid is almost 60 % at -0.22 V vs RHE, near to standard potential.

-1

-2

-3

-4

-0.8

-0.6

(mA*cm⁻²)

Conclusions

•The catalytic activity originates from interaction between MWCNTs and CeO₂ NPs.

•The electrocatalyst MWCNT@CeO, has a high selectivity in CO₂RR process.

Nano-graphitic 0.0

-0.4

-0.2

Future prospective

5. K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard, T. F. Jaramillo, J. Am. Chem. Soc., 2014, 136, 40, 14107-14113