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UNRAVELLING OPTICAL PROPERTIES OF EXTENDED CORE CONJUGATED CHROMOPHORES 
WITH COMPUTATIONAL STRATEGIES: FROM SINGLE MOLECULE TO AGGREGATES
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GENERAL INTRODUCTION

In recent years, polycyclic aromatic hydrocarbons (PAHs), especially those possessing diradical character have undergone a strong resurgence of interest due
to their potential applications in optoelectronic devices [1]. Beside small HOMO-LUMO gap and small singlet-triplet gap, one distinctive character of their optical
properties is the presence of a low-lying double-exciton (DE) state dominated by the H,HàL,L configuration[2] which may influence photophysical properties
such as two-photon absorption efficiency and quenching of the fluorescence. In real optoelectronic devices, molecules are in condensed phase, intermolecular
interactions play a relevant role. Generally, optical properties of molecular aggregates are different from those of isolated molecules [3]. Understanding optical
properties of isolated molecules and how these are tuned in molecular aggregates is therefore useful for e.g. the design of devices.
In recent years, we have been interested in modelling the optical properties of large conjugated systems, focusing not only on isolated molecules but also
considering aggregation effects. The goal of this contribution is therefore twofold. On one side, we report our recent results on the investigation of the DE state
of conjugated diradicals with cost-effective computational methods such as TDUDFT, SF-TDDFT [4] and DFT/MRCI [5]. On the other hand, we present an
investigation on the modulation of exciton states in aggregates of perylene di-imide(PBI), a well-known example of n-type organic semiconductor. In this regard
we discuss the role of charge-transfer (CT) state via a diabatization procedure and a dimer-based model-Hamiltonian (mH) approach [6].
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Conjugated system: isolated molecules
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Figure 1: investigated large diradical molecules

Conjugated system: PBI aggregates
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• Diabatization (Hdia) • Model Hamiltonian (mH)
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Exciton state character

•Unconventional CT-mediated aggregation is rationalized in terms of CT 
& FE interactions

•mH reproduces well full-aggregate calculations
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Computational Approaches

Trimer of PBI

Conlclusion

* Full aggregate= TD-wB97XD/6-31G*
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n= occupation number of frontier natural orbitals

• For molecules exhibiting remarkable diradical character: the open-
shell ground state (BS) is more stable.
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Diradical character

• Diradical character descriptor: y0 
(0 ≤ 𝑦! ≤1)

ß Composition of the GS wavefunction

• Within single reference methods, the
unrestricted approach is necessary (here
UB3LYP)
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• GROUND STATE (GS) of diradicals

• DOUBLE-EXCTION (DE) state of diradicals

Composition of the DE state wavefunctionà
• TDDFT is not suitable
• Within single reference methods, we can use
TD-UDFT and SF-TDDFT;
• Among multireference methods, DFT/MRCI is
a cost-effective alternative

The performance & conclusion

• all three methods can correctly predict the
position of the DE state;

- TD-UB3LYP gives good results if y0
(PUB3LYP) > 0.3

- SF-TDBHHLYP & DFTMRCI are
independent from y0, they tend to
underestimate & overestimate the DE
state, respectively.

• Other details can be found in ref 2.-0.8
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