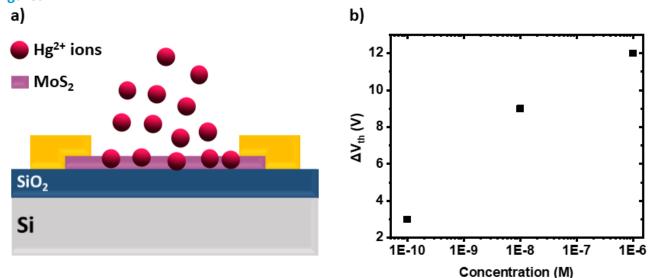
CHEM2DMAC >>> AUGUSC 31 - SEPCEMBER 03, 2021 • BOLOGNA, ICALY EUROPEAN CONFERENCE ON CHEMISCRY OF TWO-DIMENSIONAL MACERIALS

MoS₂ FETs for Ultrasensitive Heavy Metal Ion Sensing


Fernando J. Urbanos, Sara Gullace, Paolo Samorì

Université de Strasbourg, CNR ISIS UMR 7006, 8 allée Gaspard Monge, Strasbourg, F-67000, France samori@unistra.fr

Pollution of water with heavy metal ions represents one of the most severe environmental problems associated with societal development¹. Among the assorted hazardous compounds, mercury ions (Hg²⁺) are in the class of the most poisoning ones. Their accumulation in human bodies results in health deterioration, affecting all vital organs and eventually leading to chronic illnesses, overall lifespan shortening, and, in the worst-case scenario, premature death². Because of this reason, 10 nM represents the maximum permitted level of Hg²⁺ in drinkable water³.

The most common ways of detection of Hg^{2+} in water are based on chromatographic or electrochemical methods⁴. On the other hand, chemical sensors comprising highly sensitive and selective materials represent powerful approaches to detect tiny amounts of specific analytes. As sensory materials, low-dimensional materials, displaying a highest surface-to-volume ratio, combine high sensitivity with low limit-of-detection⁵. Among 2D materials, 2D transition metal dichalcogenides (TMDCs) have attracted great attention because of their unique physical and chemical properties. In this work, we have used MoS₂-based field-effect transistors (FETs) as a platform for Hg^{2+} sensing, relying on the affinity between heavy metal ions and point defects in TMDCs (i.e. sulfur vacancies). We found that Hg^{2+} acts as a dopant of MoS₂, evidenced by monitoring the transfer characteristics of FETs. Interestingly, we discovered a strict dependence of the doping with the concentration of Hg^{2+} , following a semi-log tendency. Preliminary results showed MoS₂ FETs can be used as ultrasensitive sensors, with an ultra-low limit of detection, below 100 pM. **References**

- [1] Ali, H. and Khan, E., Environmental Chemistry Letters, 2018, 16 (3), 903–917
- [2] Holmes, P., James, K.A.F., Levy, L.S., Science of the Total Environment, 2009, 408 (2), 171–182
- [3] US EPA, O. National Primary Drinking Water Regulations
- [4] Malik, L.A., Bashir, A., Qureashi, A., Pandith, A.H., Environmental Chemistry Letters, 2019, 17 (4), 1495–1521,

[5] Li, Y.-K., Yang, T., Chen, M.-L., Wang, J.-H., Critical Reviews in Analytical Chemistry, 2020, 1–20 Figures

Figure 1: a) Schematic representation of Hg^{2+} ions interacting with MoS_2 . b) Threshold voltage (ΔV_{th}) variation as a function of the Hg^{2+} concentration. Semi-log relationship shows the limit of detection is lower than 100 pM.