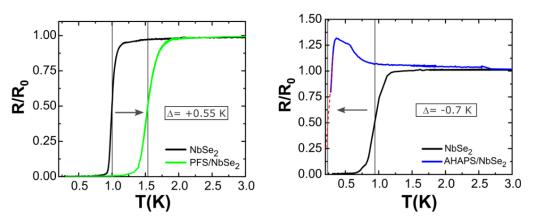
CHEM2DMAC

Tuning superconductivity in large-area NbSe₂ monolayers via molecular functionalization


M. Gobbi^{1,2,3}, F. Calavalle¹, P. Dreher⁴, A. P. Surdendran⁵, W. Wan⁴, M. Timpel⁶, R. Verucchi⁶, C. Rogero², T. Bauch⁵, F. Lombardi⁵, F. Casanova^{1,3}, M. V. Nardi⁶, M. M. Ugeda^{3,4}, L. E. Hueso^{1,3}
¹CIC nanoGUNE BRTA, 20018 Donostia-San Sebastian, Spain
²Materials Physics Center CSIC-UPV/EHU, 20018 Donostia-San Sebastian, Spain
³ IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
⁴Donostia International Physics Center DIPC, 20018 Donostia-San Sebastian, Spain
⁵Chalmers University of Technology, SE-41296 Göteborg, Sweden
⁶Institute of Materials for Electronics and Magnetism, IMEM-CNR, IT-38123 Trento, Italy

The ultrahigh surface sensitivity of 2D Materials makes it possible to tune their intrinsic electronic properties through molecular functionalization [1]. While several studies have reported how molecules can be used as dopants to improve the performance of optoelectronic devices based on 2D Materials [2], their impact on other intrinsic physical properties of TMDs, such as superconductivity, remains largely unexplored. Here, we manipulate the critical temperature (T_c) of large-area monolayer NbSe₂ in a deterministic way employing ultra-thin self-assembled adlayers [3]. Functionalization with a fluorinated or an amine-containing molecule results in a 55% increase and a 70% decrease in the T_c of NbSe₂ monolayers, respectively (Figure 1). Spectroscopic evidence indicates that the recorded changes in T_c are related to electric fields generated by the molecular adlayers, which act as an effective fixed gate terminal. Importantly, the polarity of the field-effect is programmable, as it is determined by an accurate choice of appropriate functional groups. The reported functionalization is efficient, practical, up-scalable and perfectly suited to functionalize TMDs extending over large areas.

References

- [1] M. Gobbi et al., Adv. Mater., 18 (2018) 1706103.
- [2] M.-A. Stoeckel, M. Gobbi et al., ACS Nano 13 (2019) 11613
- [3] F. Calavalle et al., Nano Letters 21 (2021) 136

Figures

Figure 1: The critical temperature of NbSe₂ single layers increases after functionalization with a self-assembled adlayer of Trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFS), while it decreases after functionalization with a self-assembled adlayer of N-[3-(trimethoxysilyl)propyl]ethylenediamine (AHAPS).