AUGUSC 31 - Sepcember 03, 2021 • BOLOGNA, ICALY

EUropean conference on chemistry of two-dimensional materials

Solution processed 2D crystals for energy applications

Francesco Bonaccorso

BeDimensional S.p.A., Via Lungotorrente secca 30R, Genova, Italy Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, Genova, Italy f.bonaccorso@bedimensional.it

Abstract

Solution processing represents an appealing industrially scalable, reliable, inexpensive production processes of graphene and related two-dimensional materials (GRMs).[1,2] These are key requirements for the widespread use of GRMs in several application areas,[1-6] providing a balance between ease of fabrication and final product quality.

In particular, in the energy sector, the production of GRMs by liquid phase exfoliation [2,6] represents a simple and cost-effective pathway towards the development of GRMs-based energy devices, presenting huge integration flexibility compared to other production methods. In this talk, I will first present our strategy to produce GRMs on large scale by wet-jet milling [7] of their bulk counterparts and their characterization following the international standard protocol and then an overview of their applications for energy conversion and storage devices. [3,8-18]

References

- [1] F. Bonaccorso, et. al., Adv. Mater. 28, 6136-6166 (2016).
- [2] F. Bonaccorso, et al., *Materials Today*, 15, 564-589, (2012).
- [3] F. Bonaccorso, et. al., Nature Photonics 4, 611-622, (2010).
- [4] E. Pomerantseva, et al., Science 366 (6468) eaan8285 (2019).
- [5] G. lannaccone, et al., *Nature Nanotech* 13, 183, (2018).
- [6] A. C. Ferrari, F. Bonaccorso, et al., Nanoscale, 7, 4598-4810 (2015).
- [7] A. E. Del Rio Castillo et. al., Mater. Horiz. 5, 890 (2018).
- [8] F. Bonaccorso, et. al., Science, 347, 1246501 (2015).
- [9] M. Garakani, et al. Energy Storage Materials 34, 1-11 (2020).
- [10] S. Bellani, et al. Chem. Mater. 33, 4106-4121 (2021).
- [11] G. Longoni, et al. Nano Energy 51, 656-667 (2018).
- [12] S. Bellani, et al. Nano Lett. 18, 7155-7164 (2018).
- [13] V. Romano, et al. ChemPlusChem 84, 882-892 (2019).
- [14] A. E. Del Rio Castillo, et al., Chem. Mater. 30, 506-516 (2018).
- [15] S. Bellani, et al. *Nanoscale Horizons* 4, 1077 (2019).
- [16] S. Bellani, et al. Adv. Funct. Mater. 29, 1807659 (2019).
- [17] L. Najafi et al., Advanced Energy Materials 8 (16), 1703212 (2018).
- [18] E. Lamanna et al., Joule 4, 865-881 (2020).