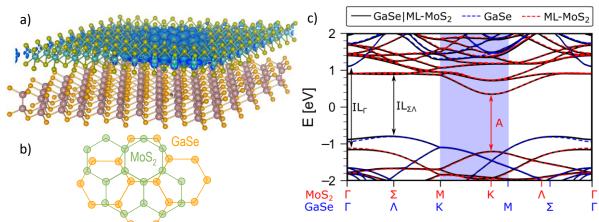
CHEM2DMAC

Interlayer excitons in van-der-Waals heterostructures: MoS₂ on GaSe

Christian Wagner^{1,2}, M. Rahaman¹, D.R.T. Zahn¹ and S. Gemming^{1,2} ¹Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany ²Chemnitz University of Technology, Institut für Physik, Reichenhainer Str. 70, 09127 Chemnitz c.wagner@hzdr.de


Hybrid van-der-Waals heterostructures of two-dimensional nanomaterials are a vibrant field of study: The (weak) electronic interaction between two layers is often reasonably described by a perturbation of the physical effects of the isolated layers, such as electrostatic doping and increased screening of *intralayer* excitons. However, it turns out that this picture of the weak interaction is not exhaustive in terms of all optical properties: the formation of *interlayer* excitons. These mixed states are measured experimentally by photoluminescence and photocurrents and predicted by theory. Examples are of MoS₂ or MoSe₂ on WSe₂, MoS₂ or GaSe due to type-II band alignment [1-3]. The conditions for the formation of interlayer excitons are elucidated from a first-principles point of view. For this, first-principles studies of a minimal test system of MoS₂ on GaSe is conducted [1]. This work envisions to predict the interlayer states as a function of the heterostack in order to

specifically tailor efficient photon absorption.

References

- [1] M. Rahaman, C. Wagner et al., J. Phys.: Condens. Matter 31, 114001 (2019).
- [2] H. Fang, C. Battaglia et al., PNAS 111, 6198 (2014).
- [3] P. Rivera, J. R. Schaibley et al., Nat. Commun. 6, 6242 (2015).

Figures

Figure 1: a) The MoS_2 | GaSe bilayer and the hole exciton wave function for the interlayer exciton at Λ . b) Both materials form a nearly commensurate superlattice at a rotation angle of 30°. c) The band structure of the bilayer system compared to the band structure of the individual layers: The MoS_2 layer is polarized by the proximity of the GaSe layer. As a consequence, the conduction band edge of GaSe is higher in energy than the one of MoS_2 (type-II alignment) and additional GaSe valence band states appear within the band gaps of the pristine MoS_2 .