European conference on chemistry of two-dimensional materials ## TMDCs Stacked Layers by Chemical Approach Marc Morant-Giner,¹ I. Brotons-Alcázar,¹ N. Y. Shmelev,² A. L. Gushchin,² L. Norman,³ A. N. Khlobystov,³ A. Alberola,¹ S. Tatay,¹ A. Forment-Aliaga,¹ E. Coronado¹ Organization, Address, City, Country (Calibri 12) 1 Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain 2 Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev av., Novosibirsk, 630090, Russia 3 Nanoscale and microscale research centre (NMRC) and School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK marc.morant@uv.es Since the isolation of graphene from graphite, tremendous efforts have been directed to the fabrication of heterostructures based on other two-dimensional (2D) materials.[1] In this scenario, the large family of transition metal dichalcogenides (TMDCs), whose members meet the general formula MX_2 (where M represents a transition metal, and X stands for a chalcogenide, such as S, Se or Te), deserves special attention.[2] In this work, we have synthesized a new composite based on chemically exfoliated MoS_2 flakes and a tungsten-based cluster $[W_3S_4(tu)_8(H_2O)]^{4+}[3]$ (tu = thiourea) that permits to obtain WS_2/MoS_2 stacked layers via controlled calcination. This represents an easy process for large scale production of stacked layers while keeping close adhesion between the 2D units (Figure 1). ## References - [1] H. Wang, F. Liu, W. Fu, Z. Fang, W. Zhoue, Z. Liu, Nanoscale, 6 (2014) 12250–12272 - [2] M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, Nature Chemistry, 5 (2013) 263–275 - [3] Y.A. Laricheva, A.L. Gushchin, P.A. Abramov, M.N. Sokolov, Journal of Structural Chemistry, 57 (2016) 962-969 ## **Figures** Figure 1: Artistic representation of the synthesis of WS₂/MoS₂ stacked layers using MoS₂ flakes functionalized with the tungsten-containing cluster as a precursor.