CHEM2DMAC September 03-06, 2019 • Dresden, Germany European conference on Chemistry OF Two-Dimensional Materials

Induced facet formation due to the growth of hexagonal Boron Nitride on curved Ni(111)

L. Fernandez¹, A. A. Makarova^{2,3}, D. Yu Usachov⁴, D. V. Vyalikh^{5,6}, C. Laubschat², J.E. Ortega^{1,6,7}, F. Schiller^{6,7}

¹Dep. Física Aplicada I, Universidad del Pais Vasco UPV-EHU, San Sebastian, Spain ²Institut für Festkörperphysik, Technische Universität Dresden, Dresden, Germany

³ Bessy, Helmholtz-Zentrum Berlin, Berlin, Germany

⁴ Physical Faculty, St. Petersburg State University, St. Petersburg, Russia

⁵ Ikerbasque, Bilbao, Spain

⁶ Donostia International Physics Center, Donostia, Spain

⁷ Centro de Física de Materiales, CSIC, San Sebastian, Spain

lauraisabel.fernandez@ehu.eus

Two-dimensional (2D) hexagonal boron nitride (h-BN) is an isostructural and electrically insulating counterpart to graphene. This material is of technological interest as a substrate for other 2D materials (i.e. graphene) [1], and as isolating layer for electronics and spintronics applications [2]. However one crucial point is the high crystalline quality, because its interface to other materials must be clean and well-controlled. The growth of h-BN has been investigated on low-index single crystalline surfaces, but real faces or nanoparticles contain not only such low-index faces but also steps, defects or additional facets. With our approach we grow h-BN on a curved Ni(111) crystal, detecting by LEED and STM a strong interaction between both materials that leads to a marked facet formation and reorganization of the whole curved Ni(111) crystal [3]. This situation is observed in Fig.1, being the faceting formation strongly developed at the highest miscut angles (curvature angles). Furthermore, angle-resolved photoemission spectroscopy (ARPES) and x-ray adsorption (XAS) experiments suggest a rigid band upshift of the whole valence band of h-BN due to a smaller interaction with the side facets of the curved Ni(111) crystal.

References

- [1] C.R. Dean et al., Nat. Naotechnol. 5, 722 (2010).
- [2] A.C. Ferrari et al., Nanoscale 7, 4598 (2015).
- [3] L. Fernansez et al., 2DMater 6, 025013 (2019).

Figures

Fig.1: STM and LEED measurements on h-BN grown on curved Ni(111) at different miscut angles.