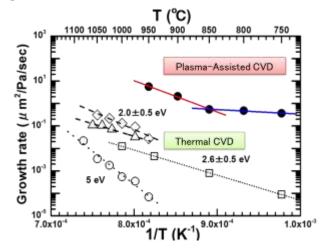
January 29-30, 2019

Masataka Hasegawa

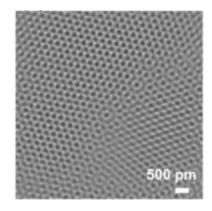
AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan

hasegawa.masataka@aist.go.jp

High-throughput synthesis of graphene by plasma CVD and its commercialization


It is necessary to establish high-quality and high-throughput graphene synthesis technique for the practical application of graphene transparent films. In this talk development of high-throughput plasma-enhanced CVD for high quality graphene and its commercialization will be discussed.

The plasma CVD is characterized by high-growth rate graphene atomic membrane compared with conventional thermal CVD (fig.1), which is suitable for the high-throughput production for the industrial use [1,2,3]. We have achieved a graphene membrane with a transmittance of 95% (two-layer) for visible light and sheet resistance of 130Ω (gold chloride doped) in A4 size by developing an original plasma CVD method. The grain boundary and residual strain in graphene synthesized by plasma CVD with high-growth rate is analyzed by scanning transmission electron microscopy (STEM) and Raman spectroscopy [4]. The connection between the grains of graphene by high-throughput synthesis was confirmed. The compressive strain remained in graphene, which affects electrical conductivity, was observed. (fig.2). We have established a start-up company for the commercialization of high-throughput synthesized graphene.


References

- [1] R. Kato, K. Tsugawa, M. Ishihara, T. Yamada, Y. Okigawa, M. Hasegawa, Carbon 77 (2014) 823-828, .
- [2] Y. Okigawa, R. Kato, M. Ishihara, T. Yamada, M. Hasegawa, Carbon 82 (2015) 60-66.
- [3] R. Kato, S. Minami, Y. Koga, M. Hasegawa, Carbon **96** (2016) 1008-1013.
- [4] R.Kato, Y. Koga, K. Matsuishi, M. Hasegawa, Japanese Journal of Applied Physics 56 (2017) 030307-1-5.

Figures

Figure 1: Temperature dependence of graphene growth rate for thermal CVD and plasma—assisted CVD which are normalized by CH4 partial pressure.

Figure 2: Grain boundary of graphene synthesized by high-throughput plasma CVD